Meloci.ru

Структура какой шины влияет на разнообразие режимов обмена

Шинная структура

Шинная структура связей.

Для достижения максимальной универсальности и упрощения протоколов обмена информацией в микропроцессорных системах применяется так называемая шинная структура связей между отдельными устройствами, входящими в систему. Суть шинной структуры связей сводится к следующему.

Классическая структура связей.

При классической структуре связей все сигналы и коды между устройствами передаются по отдельным линиям связи. Каждое устройство, входящее в систему, передает свои сигналы и коды независимо от других устройств. При этом в системе получается очень много линий связи и разных протоколов обмена информацией.

При шинной структуре связей все сигналы между устройствами передаются по одним и тем же линиям связи, но в разное время (это называется мультиплексированной передачей).

Шинная структура связей.

Причем передача по всем линиям связи может осуществляться в обоих направлениях (так называемая двунаправленная передача). В результате количество линий связи существенно сокращается, а правила обмена (протоколы) упрощаются. Группа линий связи, по которым передаются сигналы или коды как раз и называется шиной (англ. bus ).

При шинной структуре связей вся информация передается по линиям связи последовательно во времени, что снижает быстродействие системы по сравнению с классической структурой связей.

Большое достоинство шинной структуры связей состоит в том, что все устройства, подключенные к шине, должны принимать и передавать информацию по одним и тем же протоколам обмена информацией по шине. Соответственно, все узлы, отвечающие за обмен с шиной в этих устройствах, должны быть единообразны, унифицированы.

В системах с шинной структурой связей применяют три существующие разновидности выходных каскадов цифровых микросхем:

· стандартный выход (или выход с двумя состояниями – обозначается 2С, 2S, реже ТТЛ, TTL);

· выход с открытым коллектором – обозначается ОК, OC;

· выход с тремя состояниями (с возможностью отключения – обозначается 3С, 3S).

Упрощенно эти три типа выходных каскадов могут быть представлены в виде следующих схем:

Три типа выходов цифровых микросхем

У выхода 2С два ключа замыкаются по очереди, что соответствует уровням логической единицы (верхний ключ замкнут) и логического нуля (нижний ключ замкнут). У выхода ОК замкнутый ключ формирует уровень логического нуля, разомкнутый — логической единицы. У выхода 3С ключи могут замыкаться по очереди (как в случае 2С), а могут размыкаться одновременно, образуя третье, высокоимпедансное, состояние. Переход в третье состояние (Z-состояние) управляется сигналом на специальном входе EZ.

Выходные каскады типов 3С и ОК позволяют объединять несколько выходов микросхем для получения мультиплексированных

или двунаправленных линий.

При этом в случае выходов 3С необходимо обеспечить, чтобы на линии всегда работал только один активный выход, а все остальные выходы находились бы в это время в третьем состоянии, иначе возможны конфликты. Объединенные выходы ОК могут работать все одновременно, без всяких конфликтов.

Типичная структура микропроцессорной системы выглядит так:

Структура микропроцессорной системы

Она включает в себя три основных типа устройств:

· память, включающую оперативную память (ОЗУ, RAM — Random Access Memory) и постоянную память (ПЗУ, ROM —Read Only Memory), которая служит для хранения данных и программ;

· устройства ввода/вывода (УВВ, I/O — Input/Output Devices), служащие для связи микропроцессорной системы с внешними устройствами, для приема (ввода, чтения, Read) входных сигналов и выдачи (вывода, записи, Write) выходных сигналов.

Все устройства микропроцессорной системы объединяются общей системной шиной (она же называется еще системной магистралью или каналом ). Системная магистраль включает в себя четыре основные шины нижнего уровня:

· шина адреса (Address Bus);

· шина данных (Data Bus);

· шина управления (Control Bus);

· шина питания (Power Bus).

Шина адреса служит для определения адреса (номера) устройства, с которым процессор обменивается информацией в данный момент. Каждому устройству (кроме процессора), каждой ячейке памяти в микропроцессорной системе присваивается собственный адрес. Когда код какого-то адреса выставляется процессором на шине адреса, устройство с таким адресом понимает, что ему предстоит обмен информацией. Шина адреса определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных.

Количество адресов, обеспечиваемых шиной адреса, определяется как 2 N , где N — количество разрядов. Например, 16-разрядная шина адреса обеспечивает 65 536 адресов. Разрядность шины адреса обычно кратна 4 и может достигать 32 и даже 64. Шина адреса может быть однонаправленной (когда магистралью всегда управляет только процессор) или двунаправленной (когда процессор может временно передавать управление магистралью другому устройству, например контроллеру ПДП). Наиболее часто используются типы выходных каскадов с тремя состояниями или обычные ТТЛ (с двумя состояниями).

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы. Обычно в пересылке информации участвует процессор, который передает код данных в какое-то устройство или в ячейку памяти или же принимает код данных из какого-то устройства или из ячейки памяти. Но возможна также и передача информации между устройствами без участия процессора. Шина данных всегда двунаправленная . Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд. Обычно шина данных имеет 8, 16, 32 или 64 разряда. Понятно, что за один цикл обмена по 64-разрядной шине может передаваться 8 байт информации, а по 8-разрядной — только один байт. Разрядность шины данных определяет и разрядность всей магистрали. Например, когда говорят о 32-разрядной системной магистрали, подразумевается, что она имеет 32-разрядную шину данных.

Читать еще:  Какие летние шины дольше ходят

Шина управления в отличие от шины адреса и шины данных состоит из отдельных управляющих сигналов. Каждый из этих сигналов во время обмена информацией имеет свою функцию. Некоторые сигналы служат для стробирования передаваемых или принимаемых данных (то есть определяют моменты времени, когда информационный код выставлен на шину данных).

Другие управляющие сигналы могут использоваться для подтверждения приема данных, для сброса всех устройств в исходное состояние, для тактирования всех устройств и т.д. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave). Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.

Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий), с открытым коллектором (для двунаправленных и мультиплексированных линий).

Наконец, шина питания предназначена не для пересылки информационных сигналов, а для питания системы. Она состоит из линий питания и общего провода. В микропроцессорной системе может быть один источник питания (чаще +5 В) или несколько источников питания (обычно еще –5 В, +12 В и –12 В). Каждому напряжению питания соответствует своя линия связи. Все устройства подключены к этим линиям параллельно.

Если в микропроцессорную систему надо ввести входной код (или входной сигнал), то процессор по шине адреса обращается к нужному устройству ввода/вывода и принимает по шине данных входную информацию. Если из микропроцессорной системы надо вывести выходной код (или выходной сигнал), то процессор обращается по шине адреса к нужному устройству ввода/вывода и передает ему по шине данных выходную информацию.

Если информация должна пройти сложную многоступенчатую обработку, то процессор может хранить промежуточные результаты в системной оперативной памяти. Для обращения к любой ячейке памяти процессор выставляет ее адрес на шину адреса и передает в нее информационный код по шине данных или же принимает из нее информационный код по шине данных. В памяти (оперативной и постоянной) находятся также и управляющие коды (команды выполняемой процессором программы), которые процессор также читает по шине данных с адресацией по шине адреса. Постоянная память используется в основном для хранения программы начального пуска микропроцессорной системы, которая выполняется каждый раз после включения питания. Информация в нее заносится изготовителем раз и навсегда.

Важно учитывать, что устройства ввода/вывода чаще всего представляют собой устройства на «жесткой логике». На них может быть возложена часть функций, выполняемых микропроцессорной системой. Поэтому у разработчика всегда имеется возможность перераспределять функции системы между аппаратной и программной реализациями оптимальным образом. Чаще всего применяется комбинирование аппаратных и программных функций.

Иногда устройства ввода/вывода имеют в своем составе процессор, то есть представляют собой небольшую специализированную микропроцессорную систему. Это позволяет переложить часть программных функций на устройства ввода/вывода, разгрузив центральный процессор системы.

Этапы процесса моделирования: 1 – анализ результатов; 2 – оценка адекватности; 3 – реализация; 4 – формализация описания; располагаются в следующем порядке

Микропроцессорная система какого типа не обеспечивает управление внешними устройствами? 1 Микроконтроллер 2 Контроллер 3 Компьютер 4 Микрокомпьютер 5 Все типы обеспечивают управление внешними устройствами Самая мощная и наиболее универсальная микропроцессорная система, это: 1 Микрокомпьютер 2 Микроконтроллер 3 Компьютер 4 Верно 1 и 5. 5 Контроллер Какой режим обмена используется чаще всего? 1 Обмен по прерываниям 2 Все режимы используются одинаково часто 3 Обмен по прямому доступу к памяти 4 Программный обмен 5 Нет правильного ответа Структура какой шины влияет на разнообразие режимов обмена? 1 Шины данных 2 Шины адреса 3 Шины управления 4 Шины питания 5 Верно 1 и 2 Какой тип обмена обеспечивает более высокую скорость передачи информации? 1 Синхронный 2 Асинхронный 3 Нельзя сказать однозначно 4 Синхронный обмен с возможностью асинхронного обмена 5 Нет правильного ответа Какой тип прерываний требует более сложной аппаратуры устройства-исполнителя? 1 Векторный 2 Радиальный 3 Тактируемый 4 Сложность не зависит от типа прерываний 5 Нет верного ответа Для чего предназначены регистры процессора? 1 Для буферизации внешних данных 2 Для выполнения арифметических операций 3 Для временного хранения информации 4 Для ускорения выборки команд из памяти 5 Для управления прерываниями Каков принцип работы стековой памяти ? 1 Первый записанный код читается первым 2 Первый записанный код читается последним 3 Запись и чтение могут следовать в произвольном порядке 4 Содержимое стековой памяти не меняется за время работы системы 5 Стековая память ускоряет работу памяти векторов прерываний В какой памяти сохраняется содержимое регистра признаков при прерывании ? 1 В стековой памяти 2 В памяти векторов прерываний 3 В памяти программ начального запуска 4 В памяти устройств, подключенных к магистрали 5 В любой из ячеек системной памяти Какой метод адресации предполагает размещение операнда внутри выполняемой программы? 1 Абсолютная адресация 2 Регистровая адресация 3 Косвенная адресация 4 Непосредственная адресация 5 Операнд всегда находиться внутри программы Каково разделение функций между внутренними регистрами процессора? 1 Назначение регистров зависит от типа процессора 2 Все регистры выполняют одни и те же функции 3 Половина регистров используется для данных, другая половина для адресации 4 Каждый регистр выполняет свою индивидуальную функцию 5 Нет верного ответа Какие команды не меняют флаги регистра PSW ? 1 Арифметические команды 2 Логические команды 3 Команды пересылки 4 Команды переходов 5 Все команды обязательно меняют флаги регистра PSW К какой группе команд относится команда «исключающее ИЛИ»? 1 Команды загрузки 2 Арифметические команды 3 Логические команды 4 Команды пересылки 5 Команды переходов Какие возможности отсутствуют при использовании микроконтроллеров с закрытой архитектурой? 1 Возможности изменения тактовой частоты 2 Возможность подключения памяти программ и данных по параллельным магистралям 3 Возможность использования всей совокупной системы команд МК 4 Возможность подключения внешних устройств 5 Нет ограничений Какое минимальное число тактов требуется процессору на выполнение команды? 1 Все зависит от режима работы процессора 2 Все зависит от напряжения питания процессора 3 Один такт 4 Все зависит от места данной команды в программе 5 За один такт может выполняться несколько команд

Читать еще:  Какие шины можно поставить на митсубиси аутлендер

Какой вид моделирования предполагает использование компьютерных технологий?

1) имитационное 2) компьютерное 3) концептуальное 4) математическое 5) физическое

Укажите несуществующую цепь транзакта в устройстве

1) Delay 2) Interrupt 3) Pending 4) Preempted 5) Retry

Ограниченного размера объект, в котором могут находиться одновременно несколько транзактов?

1) ансамбль 2) группа 3) память 4) устройство 5) цепь событий

Укажите блок записи в параметр транзакта

1) ASSIGN 2) ENTER 3) JOIN 4) PREEMPT 5) SEIZE

Укажите блок возврата прерванного устройства

1) DEPART 2) DISPLACE 3) LEAVE 4) RELEASE 5) RETURN

Этапы процесса моделирования: 1 – анализ результатов; 2 – оценка адекватности; 3 – реализация; 4 – формализация описания; располагаются в следующем порядке

1) 1234 2) 4321 3) 4231 4) 1243 5) 4213

Дата добавления: 2018-09-23 ; просмотров: 45 ;

Функции процессора. Системная магистраль, назначение шин. Схема подключения процессора, основные выводы микросхемы процессора.

основные функции любого процессора следующие:
1)выборка (чтение) выполняемых команд;

2)ввод (чтение) данных из памяти или УВВ;

3)вывод (запись) данных в память или УВВ;

4)обработка данных (операндов), в том числе арифметические операции над ними;

5)адресация памяти, т. е. задание адреса памяти, с которым будет производиться обмен;

6)обработка прерываний и режима прямого доступа к памяти (ПДП).

Важнейшая характеристика процессора-разрядность.Разрядность ШД-скорость работы системы.Разрядность ША-допустимая сложность системы.Кол-во линий управления определяет разнообразие режимов обмена и эффективность обмена процессора с другими устройствами системы.

Магистраль (системная шина) включает в себя три многоразрядные шины:шину данных, шину адреса,шину управления.

Шина данных служит для пересылки данных между ЦП и памятью или ЦП и устройствами ввода/вывода.Шина адреса .Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор.Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении – от процессора к оперативной памяти и устройствам (однонаправленная шина).По шине управления передаются управляющие сигналы, определяющие характер обмена информацией по магистрали и предназначенные памяти и устройствам ввода/вывода.

Микросхема процессора обязательно имеет выводы трех шин: шины адреса, шины данных и шины управления.CLK-подключение внешнего тактового сигнала и тактового резонатора (быстродействие CPU). RESET-сигнал начального сброса. Для подключения CPU к магистрали используют буферные микросхемы, обеспечивающие, если необходимо, демультиплексирвоание сигналов и электрическое буферирование сигналов магистрали. Буферные микросхемы согласуют протоколы шин процессора и магистрали если они не совпадают.

Внутренняя структура микропроцессора. Схема управления выборкой команд, АЛУ, регистры процессора, схема управления прерываниями, схема управления прямым доступом к памяти, логика управления.

Схема управления выборкой команд выполняет чтение команд из памяти и их дешифрацию.

Арифметико-логическое устройство (или АЛУ, ALU) предназначено для обработки информации в соответствии с полученной процессором командой. Быстродействие АЛУ во многом определяет производительность процессора. Причем важна не только частота тактового сигнала, которым тактируется АЛУ, но и количество тактов, необходимое для выполнения той или иной команды.

Для повышения производительности разработчики стремятся довести время выполнения команды до одного такта, а также обеспечить работу АЛУ на возможно более высокой частоте. Другой путь повышения производительности процессора — использование нескольких параллельно работающих АЛУ.

Регистры процессора представляют собой по сути ячейки очень быстрой памяти и служат для временного хранения различных кодов: данных, адресов, служебных кодов. Операции с этими кодами выполняются предельно быстро, поэтому, в общем случае, чем больше внутренних регистров, тем лучше. Кроме того, на быстродействие процессора сильно влияет разрядность регистров. Именно разрядность регистров и АЛУ называется внутренней разрядностью процессора, которая может не совпадать с внешней разрядностью.

По отношению к назначению внутренних регистров существует два основных подхода. Первого придерживается, например, компания Intel, которая каждому регистру отводит строго определенную функцию. С одной стороны, это упрощает организацию процессора и уменьшает время выполнения команды, но с другой — снижает гибкость, а иногда и замедляет работу программы. Второй подход состоит в том, чтобы все (или почти все)регистры сделать равноправными, как , например, в 16-разрядных процессорах Т-11 фирмы DEC. При этом достигается высокая гибкость, но необходимо усложнение структуры процессора.PSW-содержит информацию о выполнении пред-й команды.

Среди общих регистров имеются регистры специального назначения: указатель стека SP (Stack Pointer), счетчик команд PC (Program Counter)

Схема управления прерываниями обрабатывает поступающий на процессор запрос прерывания, определяет адрес начала программы обработки прерывания (адрес вектора прерывания), обеспечивает переход к этой программе после выполнения текущей команды и сохранения в памяти (в стеке) текущего состояния регистров процессора. По окончании программы обработки прерывания процессор возвращается к прерванной программе с восстановленными из памяти (изстека) значениями внутренних регистров.

Схема управления прямым доступом к памяти служит для временного отключения процессора от внешних шин и приостановки работы процессора на время предоставления прямого доступа запросившему его устройству.

Логика управления организует взаимодействие всех узлов процессора, перенаправляет данные, синхронизирует работу процессора с внешними сигналами, а также реализует процедуры ввода и вывода информации.

Дата добавления: 2015-04-18 ; просмотров: 56 ; Нарушение авторских прав

Структура какой шины влияет на разнообразие режимов обмена

Шиной (Bus) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шина предназначена для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом.

Шина имеет места для подключения внешних устройств — слоты, которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

Шины в ПК различаются по своему функциональному назначению:

  • системная шина (или шина CPU) используется микросхемами Chipset для пересылки информации к CPU и обратно;
  • шина кэш-памяти предназначена для обмена информацией между CPU и кэш-памятью;
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода — это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время — шина USB.

Шина имеет собственную архитектуру, позволяющую реализовать важнейшие ее свойства — возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контроллер шины.

Контроллер шины осуществляет управление процессом обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем — Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, CPU 80386 и 80486 — 32-разрядную, а компьютеры с CPU семейства Pentium — 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство PC. По шине адреса передается идентификационный код (адрес) отправителя и (или) получателя данных.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т. е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV — 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду. Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, для 16-разрядной шины ISA пропускная способность определяется так:

(16 бит * 8,33 МГц): 8 = 16,66 Мбайт/с.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2х) или в четыре (режим 4х) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключаются посредством интерфейса (Interface — сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен только если интерфейсы этих компонентов совместимы.

Ссылка на основную публикацию
Adblock
detector
Читайте также:

  1. CASE -технологии, как новые средства для проектирования ИС. CASE – пакет фирмы PLATINUM, его состав и назначение. Критерии оценки и выбора CASE – средств.
  2. Gt; 89. Предмет и функции СО как научной дисциплины и практической области деятельности. (не до
  3. I. Основные термины курса
  4. II СЕНСОРНЫЕ ФУНКЦИИ
  5. II. Структура Системы сертификации ГОСТ Р и функции ее участников
  6. III. Функции Фондово-закупочной комиссии
  7. RAID назначение виды
  8. S: Перечислите основные направления в исламе.
  9. S: Перечислите основные направления в исламе.
  10. S: Перечислите основные направления протестантизма.