Meloci.ru

Как посмотреть скорость системной шины

Что такое материнская плата

Одним из самых важных элементов компьютера является системная, она же известная как материнская, плата. Эта текстолитовая пластина с припаянными к ней микросхемами и разъёмами выполняет сборочную функцию, объединяя все остальные элементы компьютера. Без материнской платы не собрать ни компьютер, ни смартфон, ни какое-либо другое сложное устройство. Она — основа всего.

Материнская плата, что это?

Системная (материнская) плата соединяет все важнейшие элементы компьютера. Благодаря ей организуются все сложные процессы и выполняются задачи. Даже компьютерные мышь и клавиатура работают так, как они работают, потому что обмениваются информацией с остальными устройствами через системную плату. Работоспособность всего компьютера зависит от неё. Да и скорость — тоже. Потому очень важно при сборе компьютера учитывать пропускную способность шины системной платы.

Главные элементы материнской платы:

  • Чипсет. Набор микросхем, связующий компонент для других элементов.
  • Северный мост. Соединяет процессор с остальными компонентами.
  • Южный мост. Подключает компоненты, которым не требуется высокая скорость.
  • BIOS. Микросхема со стартовым ПО для прозвона компонентов и запуска операционной системы.

Положение при установке, количество подключаемых устройств, тип разъёмов и многое другое определяется форматом системной платы. Материнские платы бывают разных форматов. Вот самые распространённые:

Самая компактная плата — Mini ITX, идёт с интегрированным процессором, редко когда используется при самостоятельном сборе компьютера. Следующая по размеру — mATX. Отличная плата для офисного или домашнего рабочего компьютера. ATX — самая крупная и функциональная плата, к ней можно подключить гораздо больше устройств. Подходит для профессиональных рабочих компьютеров (для дизайна, программирования, работы с видео и других занятий) и игровых системников. Если вы самостоятельно собираете компьютер, лучше сначала приобретайте подходящую системную плату, а затем — системный блок, в который войдёт и она, и все дополнительные подключаемые элементы.

Микросхема BIOS на системной плате

После того, как вы нажали на кнопку питания на своём компьютере, он первым делом обращается к BIOS. Это — наиважнейшая микросхема, которая устанавливается на материнскую плату. Да, те белые надписи, которые пробегаются по экрану вашего компьютера, демонстрируют работу микросхемы BIOS. Она проверяет работоспособность всех систем, связывается с подключенными устройствами (монитором, клавиатурой, мышью и другими внешними). Работа BIOS-а не прекращается до момента выключения.

Почему он так важен и как вообще работает? Всё просто. На микросхеме BIOS заранее записано базовое программное обеспечение, которое необходимо для того, чтобы компьютер вообще запустился. Это ПО прозванивает все компоненты и затем запускает основную операционную систему. Свой собственный BIOS может стоять не только на системной плате, но также на видеокартах и другом современном высокотехнологичном железе.

Шины на материнской плате

Все данные между компонентами, установленными на материнской плате, должны как-то передаваться, чтобы компьютер вообще функционировал. Для этого и используются шины — группы проводников, по которым пересылаются команды от одного компонента к другому.

У шин системной платы разный функционал. Основная передача данных осуществляется по адресной шине, которая считается основной. Шины, связывающие процессор с оперативной памятью, формируют одну общую, по частоте которой можно судить о скорости системной платы. Пропускная способность шин — важный параметр, на который стоит обращать внимание при выборе системной платы для сборки собственного компьютера. Другие шины позволяют подключать сторонние устройства и расширять возможности всего компьютера.

Системная шина — что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности – такое понятие, как “Системная шина”. Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных – данные, адреса – соответственно, адрес (устройств и ячеек памяти), управления – управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Читать еще:  Как из шин сделать пуфик

Я не случайно на фотографии к этой статье указал на надпись “FSB”. Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как “Front-side bus” – то есть “передняя” или “системная”. И , на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе – нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись “O.C.” означает, буквально “разгон”, это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является . Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора – помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины – все это синонимы. Все разъемы материнской платы – видеокарта, жесткий диск, оперативная память “общаются” между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Системная шина и шина кэш-памяти

Определение

Шины — это соединения маршрутов данных, связывающие центральный процессор компьютера с модулями оперативной памяти и иными устройствами, с которыми он взаимодействует. Системная (front-side) шина связывает центральный процессор с основной памятью компьютера и шинами периферийных устройств. Шина кэш-памяти (backside) — достаточно быстрое соединение, которое центральный процессор использует для обмена информацией с внешней кэш-памятью, в том числе и с кэшем второго уровня. Скорость шины часто характеризуют таким ее параметром, как рабочая частота в мегагерцах.

Что будет, если установить самый новый, самый мощный двигатель в дряблый кузов старенького авто? Самый мощный автомобиль в округе, не так ли? Возможно, если не полетит трансмиссия, не раскрошатся оси и не отлетят крылья, как крыша обветшавшего сарая в вихре торнадо.

Читать еще:  Как резать шины для поделок

Точно так же опытные пользователи компьютеров знают, что, если установить самый современный процессор в рядовую персоналку, это вовсе не обязательно приведет к общему росту производительности. Более того, скорость и эффективность самого процессора в значительной степени зависят от системной шины, которую инженеры создают в расчете на набор микросхем, составляющих его ближайшее окружение.

Важной характеристикой, определяющей реальную производительность процессора, является скорость системной шины — основного конвейера, который процессор использует для связи с остальными компонентами системы. Современные системные шины, такие как 400-мегагерцевый канал в Pentium 4, передают данные со скоростью в трое быстрее, чем 133-мегагерцевая шина, применяемая в процессоре Pentium III.

С другой стороны, шина кэш-памяти второго уровня, которая служит для передачи данных в кэш, действительно работает с тактовой частотой центрального процессора. В достопамятные времена (примерно в середине 1990-х годов) шина кэш-памяти была важным средством поддержки обмена данными. В процессорах Pentium II и Pentium Pro используется так называемая внешняя кэш-память, которая позволяет хранить часто используемые данные ближе (как с точки зрения расстояния, так и с точки зрения времени, необходимого для доступа к ним) к центральному процессору, чем данные, размещаемые в традиционной оперативной памяти. Специальный конвейер связывал процессор с этой кэш-памятью второго уровня, которая использовалась для передачи данных между ними с тактовой частотой процессора. Конкуренты Intel, такие как Advanced Micro Devices, намерены воспользоваться той же самой тактикой.

На кристалле и вне него

Размещение кэш-памяти вне кристалла тем не менее требует определенных компромиссов. Затраты на производство набора из двух микросхем выше, чем на создание одной микросхемы. Кроме того, два отдельных элемента требуют точной компоновки на системной плате. Вдобавок в первых компьютерных системах с Pentium использовались шины памяти с настраиваемыми (и очень дорогими) модулями статической оперативной памяти SRAM в качестве кэш-памяти.

Совсем недавно разработчики микросхем предприняли следующий логический шаг в организации связи между процессором и кэшем: кэш-память второго уровня была интегрирована на кристалл самого процессора. Это снижает требования к размеру процессорного устройства, сокращает затраты на компоновку и позволяет разработчикам переходить на недорогие конвейеры со статической оперативной памятью. Вместо того чтобы использовать внешнюю шину для связи центрального процессора с памятью, разработчики микропроцессоров теперь интегрируют шину кэш-памяти в кристалл.

«Почти все основные процессоры теперь имеют интегрированную кэш-память второго уровня, — отметил Кэвин Крюэлл, аналитик консалтинговой и издательской компании Micro Design Resources, специализирующейся на анализе тенденций в области микропроцессорных технологий. — Шина кэш-памяти теперь размещается непосредственно на подложке микросхемы; по существу, шины как таковой уже не существует».

Но на самом деле говорить об исчезновении отдельной шины кэш-памяти пока рано. Микропроцессоры PowerPC G4 с тактовой частотой 400 или 500 МГц, которыми оснащаются, к примеру, компьютеры Power Mac G4, Cube и ноутбук Titanium компании Apple Computer, продолжают использовать архитектуру отдельной шины кэш-памяти. Процессорное ядро G4 задействует как шину кэш-памяти второго уровня, имеющей емкость 1 Мбайт, так и 64-разрядную шину кэш-памяти, которая дополняется 100-мегагерцевой системной шиной, что позволяет добиться максимальной скорости передачи данных 800 Мбит/с.

Intel и Compaq Computer в любом случае пока не отказываются от шины кэш-памяти. Их перспективные микропроцессоры, 64-разрядный процессор Intel Itanium и Alpha EV8 разработки Compaq, поддерживают кэш-память третьего уровня; в обоих предполагается и в дальнейшем использовать такую архитектуру шины для организации эффективной передачи данных.

Кроме того, отдельная кэш-память дает возможность реализовать более эффективную многопроцессорную обработку в настольных ПК и на серверах, содержащих более одного процессора. Если процессоры не имеют собственных резервов кэш-памяти, то им приходится разделять центральный пул оперативной памяти со своими «коллегами», и это может привести к снижению общей производительности компьютерной системы, поскольку процессоры будут вынуждены конкурировать за ресурсы.

«Все понимают, что данное решение лучше, чем применение системной шины, — заметил Крюэлл. — Совместное использование полосы пропускания с системной памятью нельзя считать оптимальным».

Читать еще:  Какой размер шин лучше на ниву шевроле

Шины твоей машины

Поделитесь материалом с коллегами и друзьями

Системная шина – важнейший элемент компьютера

Знать строение компьютера обычному пользователю совершенно не обязательно. Но если вы хотите считать себя продвинутым пользователем, который без труда справляется с любой поставленной компьютерной задачей, да к тому же собирается в ближайшем будущем самостоятельно собрать свой первый системный блок, то подобные знания просто необходимы.

  1. Процессора.
  2. Видеоплаты.
  3. Оперативного запоминающего устройства.

Но даже все эти компоненты в совокупности не смогут функционировать. Для этого необходимо организовать между ними связь, посредством которой осуществлялись бы логические и вычислительные операции. Подобные системы связи организуют системные шины компьютера. Поэтому можно сказать, что это еще один незаменимый компонент системного блока.

Системная шина

Системная шина – это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:

  • механического;
  • электрического или физического;
  • логического и уровня управления.

Первостепенное деление системных шин

  1. Внутренними, которые обеспечивают взаимосвязь внутренних компонентов системного блока, таких как процессор, ОЗУ, материнская плата. Такая системная шина называется еще локальной, так как служит для связи местных устройств.
  2. Внешними, которые служат для подключения наружных устройств (адаптеров, флеш-накопителей) к материнской плате.

В самом общем случае системной шиной можно назвать любое устройство, которое служит для объединения в одну систему нескольких устройств. Даже сетевые подключения, например, сеть Интернет, в некотором роде является системной шиной.

Самая важная система связи

Вся деятельность, которую мы осуществляем посредством компьютера – создание разнообразных документов, воспроизведение музыки, запуск компьютерных игр – была бы невозможна без процессора. В свою очередь, микропроцессор не смог бы выполнять свою работу, если бы не имел каналов связи с другими важными элементами, такими как ОЗУ, ПЗУ, таймеры и разъема ввода-вывода информации. Именно для обеспечения этой функции в компьютере имеется системная шина процессора.

Быстродействие компьютера

Для функционирования микропроцессора в состав системы каналов связи входит сразу несколько шин. Это шины:

Количество представленных типов системных каналов связи процессора может быть от одного и более. Причем считается, что чем больше шин установлено, тем больше общая производительность компьютера.

Важным показателем, который также затрагивает производительность ПК, является пропускная способность системной шины. Она определяет скорость передачи информации между локальными системами электронно-вычислительной машины. Рассчитать ее довольно просто. Необходимо лишь найти произведение между тактовой частотой и количеством информации, то есть байт, которая передается за один такт. Так, для давно устаревшей шины ISA пропускная способность составит 16 Мбайт/с, для современной шины PCI Express это значение будет находиться на отметке в 533 Мбайт/с.

Виды компьютерных шин

Несмотря на то что она была изобретена более полувека назад, данная системная шина активно применялась и в настоящее время, уверенно конкурируя с более современными представителями. Это смогло осуществиться благодаря выпуску большого количества расширений, которые увеличивали ее функционал. Лишь в последние годы процессоры стали выпускаться без использования ISA.

Современные системные шины

Шина VESA стала новым словом в области компьютерной техники. Разработанная специально для непосредственного подключения внешних устройств к самому процессору, она и по сей день обладает высокими показателями скорости передачи информации и обеспечивает высокую производительность процессора.

Вот и вся краткая справочная информация, которая должна пролить свет на один из важнейших компонентов современных компьютеров. Следует сказать, что здесь представлена лишь малейшая частичка информации о компьютерных шинах. Полным их изучением занимаются в специальных заведениях на протяжении нескольких лет. Подобная детальная информация необходима непосредственно для разработки новых моделей микропроцессоров или для модернизации уже существующих. Шина PCI является ближайшим конкурентом предыдущего представителя каналов передачи данных. Эта системная шина была разработана компанией Intel специально для производства процессоров собственной торговой марки. Данное устройство способно обеспечить еще большую скорость передачи данных и при этом не нуждается в дополнительных элементах, как в предыдущем примере.

Ссылка на основную публикацию
Adblock
detector