Соотношение воздуха и топлива
Subaru Impreza WRX Десептикон › Бортжурнал › Тонкая настройка смеси воздух/топливо AFR и датчик лямбда
— Сделайте глубокий вдох и не дышите.
— Не дышите.
— Не дышите.
— Не дышите.
— Выносите.
— Следующий!
Начнем с первого понимания, что именно мы настраиваем и почему. Наш интерес здесь представляет отношение воздуха к топливу (AFR) подаваемому в камеру сгорания. Этот показатель влияет на поведение процесса горения и может служить как для безопасный показателей, направленных на работу двигателя при средних нагрузках так и на работу на пределе, с максимальной отдачей мощности. Даже небольшое изменение параметров соотношения смеси кардинально изменит поведение машины. Важно понимать “как, зачем и для чего” вы меняете эти параметры.
Соотношение бензина/воздуха, в котором вся смесь полностью сгорает считается стехиометрической (идеальной). Для бензина / дизеля соотношение равно примерно 14.7 частей воздуха к 1 части топлива (14.7:1).
Смесь, с большим (чем идеальное) соотношением топлива к кислороду называют богатой, соответственно смесь где больше воздуха (больше чем в идеальной) — бедной.
По сути, практически во всех случаях, богатая смесь должна быть целью, это намного безопаснее и надежнее для двигателя т.к. бедная смесь быстрее воспламеняется и возрастает нагрузка на двигатель.
В таблице приведены основы влияния AFR на поведение двигателя и динамику машины и должны служить в качестве общего руководства при определении соотношения воздух/топливо на мощность автомобиля с полностью открытым дросселем.
Показание лямбда-датчика
вы заметили в таблице что лямбда выдает какие-то циферки.
Откуда они берутся?
Цифра лямбды это отношение текущей смеси к идеальной, т е. (идеальная как мы помним 14,7:1)
значит для смеси 12,8:1 лямбда будет равна (12,8 разделить на 14,7) — 0,87.
Сравниваем с таблицой — и правда!
Имея показания лямбда-датчика в реальном времени можно получить любой результат исходя из потребностей и залитого топлива, т.к. под каждое топливо нужно свое соотношение топливо/воздух.
Существует два типа датчика лямбды :
Широкополосый и узкополосый.
Кислородный датчик традиционно используется большинством производителей OEM являются узкополосный датчик. Этот датчик используются для измерения AFR в очень узком диапазоне (отсюда и название), и только с точностью до этой узкой области. Датчик, как правило, имеет 0-1 выходного напряжения и будет наиболее точным по лямбда-1 (стехиометрической).
Такой датчик точно показывает лямбду только в диапазоне от 14,2 до 15,0.
Если параметры смеси выше или ниже диапазона, то датчик по-просту игнорируется мозгами машины, ведт он абсолютно не точно показывает данные вне диапазона а значит его показатели не могут служить критерием для корректировки смеси.
Топливная система автомобиля по-просту не “слушает” этот датчик в экстремальных условиях, таких как полностью открытая дроссельная заслонка или тяжелые нагрузки, где условия являются слишком быстро меняющимися и отношения топлива/воздуха в смеси выходит за пределы диапазона лямбда-датчика.
Цель этих датчиков, установленных на заводе-производителе, является управление транспортным средством в размеренных режимах работы, например езда по шоссе, а также мониторинг ошибок системы управления подачей топлива транспортным средством. Эти операции имеют важное значение для поддержания надлежащего уровня выбросов и максимизации экономии топлива и производительности.
Как мы видим из таблицы №1 — для максимальной мощности и крутящего момента нужно соотношение топлива/воздуха далеко за пределами рабочего диапазона узкополосого лямбда-датчика.
Однако, узкополосый датчик намного точнее работает в своем диапазоне, чем работает в его диапазоне широкополосый датчик, по этому наверное их и ставят вместе. Широкополосый — для мяса, узкополосый — для езды.
Широкополосные датчики имеют гораздо более широкий диапазон точности от 7,35 до 22,39. Это позволяет увеличить диапазон датчика для измерения соотношения топливно-воздушной смеси в любых условиях работы двигателя. Эта информация имеет решающее значение при настройке вашего двигателя.
Вот мы и попытались ровно въехать в понимание топливной смеси, и хоть получилось у нас наверняка криво, но мы будем стараться!
СУБАРИСТЫ ЗА СВОБОДНЫЕ ЗНАНИЯ!
© Роман Гришин, продолжение непременно должно быть
Источник: www.drive2.ru
Автомобильный справочник
для настоящих автомобилистов
Топливовоздушная смесь в бензиновом двигателе
Для работы двигателю с искровым зажиганием (SI) требуется топливовоздушная смесь с определенным соотношением количества воздуха и топлива (отношение воздух/топливо). Идеальное, теоретически полное сгорание топлива имеет место при отношении масс 14,7:1 (стехиометрическое отношение), т.е для сгорания 1 кг топлива требуется 14,7 кг воздуха. Или: топливо объемом 1 л полностью сгорает в присутствии 9500 л воздуха.
Топливовоздушная смесь
Удельный расход топлива в значительной степени зависит от соотношения воздух/топливо (см. рис. «Влияние коэффициента избытка воздуха на удельный расход топлива и неравномерную работу двигателя при постоянной эффективной мощности» ). Для обеспечения действительно полного сгорания топлива требуется избыточное количество воздуха и, следовательно, как можно более низкий расход топлива. Однако здесь имеют место ограничения, зависящие от воспламеняемости и доступного времени сгорания смеси.
Также состав смеси влияет на эффективность снижения выбросов токсичных веществ с отработавшими газами. В настоящее время с этой целью используется трехкомпонентный каталитический нейтрализатор, который действует с максимальной производительностью при стехиометрическом соотношении воздух/топливо. Это может значительно снизить вероятность повреждения компонентов системы очистки отработавших газов. Поэтому современные двигатели, когда это позволяют условия работы, работают при стехиометрическом составе смеси.
Для определенных условий работы двигателя требуется адаптация состава смеси. Так, изменение состава смеси требуется при пуске холодного двигателя. Отсюда следует, что системы смесеобразования должны обеспечивать работу двигателя в различных режимах.
Коэффициент избытка воздуха λ
В качестве показателя отличия фактического состава смеси от теоретически необходимого массового отношения (14,7:1) был выбран коэффициент избытка воздуха λ (лямбда). Коэффициент λ равен отношения массы подаваемого в двигатель воздуха к массе воздуха, необходимой для обеспечения стехиометрического состава смеси.
λ = 1: масса подаваемого в двигатель воздуха равна теоретически необходимой массе.
λ 1: имеет место избыток воздуха, т.е. смесь становится обедненной. При работе на бедной смеси эффективная мощность двигателя падает, при этом обеспечивается снижение расхода топлива. Максимально допустимое значение λ — «предел возникновения пропусков зажигания при обеднении смеси» в значительной степени зависит от конструкции двигателя и используемой системы смесеобразования. При использовании такой смеси она долго не воспламеняется, а процесс сгорания происходит с нарушениями, сопровождаемыми неравномерной работой двигателя.
На двигателях с искровым зажиганием (SI) и впрыском топлива во впускной трубопровод, при постоянной выходной мощности двигателя, минимальный расход топлива достигается в зависимости от двигателя при избытке воздуха 20 — 50 % (λ = 1,2 -1,5).
На рис. «Влияние коэффициента избытка воздуха на содержание токсичных веществ в отработанных газах» показаны зависимости удельного расхода топлива, а также содержания различных токсичных веществ в отработавших газах от коэффициента избытка воздуха (при постоянной выходной мощности двигателя). Из этих графиков видно, что нельзя выбрать идеальное значение коэффициента λ, при котором все рассматриваемые показатели были бы в максимальной степени приемлемы. Для двигателей с впрыском топлива во впускной трубопровод для обеспечения «оптимального» расхода топлива при «оптимальной» эффективной мощности приемлемым является значение λ в диапазоне 0,9-1,1.
В двигателях с прямым впрыском топлива и послойным распределением заряда смеси имеют место иные условия сгорания топлива, поэтому предел обеднения смеси наступает при значительно более высоких значениях λ. В диапазоне частичных нагрузок эти двигатели могут работать при значительно более высоком коэффициенте избытка воздуха (до λ = 4).
Для нормальной работы трехкомпонентного каталитического нейтрализатора необходимо точное соблюдение λ = 1 при нормальной рабочей температуре двигателя. Выполнение этого условия возможно при обеспечении точной дозировки массы поступающего воздуха, включая и возможные добавки.
Для получения оптимального процесса сгорания в двигателях с системой впрыска топлива во впускной трубопровод необходимо обеспечивать не только впрыск точного количества топлива, но и однородность топливовоздушной смеси, что достигается эффективным распылением топлива. Если эти условия не соблюдаются, во впускном трубопроводе или на стенках камеры сгорания образуются большие капли топлива, которые полностью не сгорают, что приводит к повышенным выбросам несгоревших углеводородов.
Системы смесеобразования
Системы впрыска топлива или карбюраторы служат для приготовления топливовоздушной смеси, наилучшим образом обеспечивающей эффективную работу двигателя в заданном режиме. Системы впрыска топлива, особенно их электронные версии, лучше приспособлены для получения оптимальных режимов. Они позволяют снизить расход топлива и повысить эффективную мощность двигателя. Все более строгие требования в отношении снижения токсичности отработавших газов заставили производителей автомобилей практически полностью отказаться от карбюраторных топливных систем и перейти на электронные системы впрыска топлива.
До начала этого столетия в автомобильной промышленности практически исключительно использовались системы, в которых смесеобразование происходит вне камеры сгорания (система с впрыском топлива во впускной трубопровод, см. рис. «Схематическое изображение системы впрыска топлива» , а). В настоящее время все шире применяются системы с внутренним смесеобразованием, т.е. с прямым впрыском топлива в камеру сгорания (система прямого впрыска топлива для бензиновых двигателей, см. рис. «Схематическое изображение системы впрыска топлива» , Ь), позволяющие еще больше снизить расход топлива и повысить выходную мощность двигателя.
Источник: press.ocenin.ru
Процесс сгорания топлива
Для обеспечения сгорания в двигателе внутреннего сгорания небольшое количество топлива смешивается с поступающим воздухом. К сожалению, двигатель внутреннего сгорания не может сжигать без остатка все топливо, которое он использует. Вследствие этого двигатель выпускает побочные продукты сгорания в виде отработавших газов. Некоторые из этих побочных продуктов вредны и загрязняют воздух. Борясь с этой проблемой, изготовители автомобилей разработали так называемые устройства понижения токсичности выхлопа, которые ограничивают выброс этих вредных веществ или полностью устраняют его.
Сгорание
В процессе сгорания происходят несколько химических реакций. Одни соединения разрушаются, а новые соединения образуются. Управление процессом сгорания – это ключ к управлению всей работой и токсичностью выхлопа двигателя внутреннего сгорания.
Для процесса сгорания требуются три элемента:
1. Воздух
2. Топливо
3. Искра зажигания
Эти три элемента иногда упоминаются как “триада сгорания”. Если один элемент триады отсутствует, сгорание невозможно. Двигатель внутреннего сгорания рассчитывается на объединение этих трех элементов, поддерживая полный контроль над процессом.
Воздух состоит из атомов азота (N), кислорода (О ) и других газов. Большую часть воздуха составляет азот, являющийся инертным, негорючим газом. Воздух не горит, но в нем содержится достаточное количество кислорода, что позволяет поддерживать сгорание.
Топливо
Бензин состоит из углеводородов, которые образуются в результате переработки сырой нефти. Углеводороды состоят из атомов водорода (Н) и углерода (С). В бензин добавляются различные химикаты, типа ингибиторов коррозии, красителей и очищающих средств. Эти химикаты называются присадками.
Тепло и давление, присутствующие в двигателе внутреннего сгорания, могут заставить бензин, находящийся в камере сгорания, воспламениться раньше, чем генерируется искра зажигания. Это называется преждевременным воспламенением и более подробно описывается дальше. Октановое число бензина указывает на то, насколько хорошо он противостоит преждевременному воспламенению. Дополнительная очистка может способствовать увеличению октанового числа.
В настоящее время в регионах с чрезвычайно высоким уровнем загрязнения воздуха используется тип топлива, называемый улучшенным бензином (подвергнутым реформингу) (RFG). Такой бензин имеет специальные присадки, называемые окислителями, которые улучшают сгорание, увеличивают октановое число и уменьшают токсичность выхлопа.
В двигателе внутреннего сгорания воздух и топливо поступают в камеру сгорания, и затем генерируется искра зажигания, вызывающая сгорание. Перед зажиганием воздушно-топливной смеси двигатель нагревается и сжимает смесь. Нагревание помогает процессу смесеобразования, а сжатие увеличивает энергию, генерируемую при сгорании.
В двигателе внутреннего сгорания сгорание происходит в течение доли секунды (приблизительно в течение 2 миллисекунд). В этот момент разрушаются связи между атомами водорода и углерода. Разрушение связей приводит к высвобождению энергии в камере сгорания, толканию поршня вниз и инициированию вращения коленчатого вала.
После разделения атомов водорода и углерода они соединяются с атомами кислорода, содержащимися в воздухе. Атомы водорода объединяются с кислородом, образуя воду. Атомы углерода объединяются с кислородом, образуя двуокись углерода (углекислый газ).
Говоря языком химии, полное сгорание в двигателе внутреннего сгорания выражается формулой:
НС + О2 = Н2 О + СО2
топливо + кислород = вода и двуокись углерода
Абсолютно эффективный двигатель внутреннего сгорания на выпуске имел бы только воду (Н О) и двуокись углерода (СО ), что соответствует Данной выше химической формуле. Это означало бы, что все углеводороды в процессе сгорания разложились. К сожалению, дело обстоит не так.
Неэффективное сгорание -это главная причина наличия вредных веществ в выхлопе автомобиля. Эффективное сгорание ведет к наименьшей токсичности выхлопа. Эффективность сгорания увеличивается посредством корректировки соотношения “воздух/топливо”.
Инженеры-автомобилестроители определили, что токсичность выхлопа автомобиля можно уменьшить, если бензиновый двигатель работает с соотношением “воздух/топливо”, равным 14.7:1. Технический термин известен как “стехиометрическое соотношение”. Стехиометрическое соотношение означает химически правильную воздушно-топливную смесь, которая производит желаемую химическую реакцию, входе которой происходит полное сгорание топлива с желаемой токсичностью выхлопа.
Соотношение “воздух/топливо” 14.7:1 обеспечивает наилучшее управление всеми тремя компонентами (углеводороды, одноокись углерода и оксиды азота) при выпуске почти во всех условиях. Соотношение “воздух/топливо” также увеличивает эффективность каталитического нейтрализатора, который является частью системы выпуска автомобиля.
Бедная воздушно-топливная смесь
Обеднение воздушно-топливной смеси обычно вызывается неисправностью в двигателе. Обеднение – это состояние, когда двигатель получает слишком много воздуха или кислорода. Причиной слишком высокого уровня кислорода могут стать утечки вакуума или неисправная система подачи топлива.
Богатая воздушно-топливная смесь
Богатая воздушно-топливная смесь – это также указание на неисправность двигателя. Обогащение – это состояние, когда двигатель не может сжечь все топливо, которое вошло в камеры сгорания. Состояние обогащения может возникать в результате высокого давления топлива, проблем с опережением зажигания или низкой компрессии.
Имеются два типа аномального сгорания, которое может происходить в двигателе: детонация и преждевременное воспламенение.
Детонация – это неустойчивый процесс горения, который может вызывать неисправность прокладки головки цилиндров, а также и другие повреждения двигателя. Детонация возникает, когда в камере сгорания наблюдается перегрев и повышенное давление. Когда это происходит, создается взрывная сила, которая инициирует резкий рост давления в цилиндрах, сопровождаемый сильным металлическим стуком. Ударные волны, похожие на удары молотка, генерируемые при детонации, подвергают прокладку головки цилиндров, поршень, кольца, свечу зажигания и подшипники шатуна серьезным перегрузкам.
Преждевременное воспламенение – это другое аномальное состояние горения, которое иногда путают с детонацией. Преждевременное воспламенение имеет место, когда какая-либо точка в камере сгорания становится настолько горячей, что становится источником зажигания и заставляет топливо воспламеняться до генерирования искры зажигания. Оно может сделать свой вклад в детонацию или даже стать ее причиной.
Вместо воспламенения топлива в правильный момент времени, чтобы дать коленчатому валу плавный толчок в требуемом направлении, топливо загорается преждевременно. Это вызывает мгновенный обратный удар в тот момент, когда поршень пытается повернуть коленчатый вал в неправильном направлении. Этот удар вследствие напряжений, которые он создает, может быть очень разрушительным. Кроме того, преждевременное воспламенение может локализовать тепло до такой степени, что оно может частично проплавить или прожечь отверстие в головке поршня.
Стехиометрическая воздушно-топливная смесь обеспечивает наилучший компромисс между динамическими характеристиками, экономичностью и токсичностью выхлопа.
При богатой воздушно-топливной смеси все топливо не сгорает. Поэтому увеличивается уровень выделений углеводородов и одноокиси углерода. Бедная воздушно-топливная смесь может при сгорании генерировать повышенное количество тепла. Поэтому увеличивается содержание оксидов азота. Чрезмерно обедненная воздушно-топливная смесь в результате приводит к пропускам воспламенения. Это увеличивает выделения углеводородов.
Каталитические нейтрализаторы, которые химически нейтрализуют токсичные отработавшие газы, наиболее эффективны в очень узком диапазоне, близком к стехиометрическому соотношению.
Побочные продукты сгорания
Поскольку двигатель внутреннего сгорания не имеет абсолютной эффективности, в процессе сгорания генерируются три нежелательных побочных продукта:
1. Углеводороды (НС)
2. Одноокись углерода (СО)
3. Оксиды азота (N0 X )
Неполное сгорание вызывает выделение углеводорода и одноокиси углерода. Выделения углеводорода – это углеводороды, которые не разрушились в процессе сгорания. Одноокись углерода образуется, потому что не имеется достаточного количества атомов кислорода, чтобы связать углерод.
В идеальном случае азот должен проходить камеру сгорания неизменным. Но когда температура в камере сгорания достигает приблизительно 1 371 °С (2 500 °F), атомы азота и кислорода связываются, образуя (N0 X )
Химическая формула процесса сгорания, при котором образуются оксиды азота выглядит следующим образом:
НС + О2 + N2 = Н2 О + СО + N0x
Формула “NO ” используется для оксидов азота, потому что OHci отражает комбинацию атома азота и любого количества атомов кислорода. Например, оксид азота (N0) состоит из одного атома азота и одного атома кислорода, в то время как двуокись азота (N0 ) состоит из одного атома азота и двух атомов кислорода.
Высокое содержание НС
Высокое содержание НС может быть вызвано недостаточной эффективностью системы зажигания, неправильным опережением зажигания или неправильными фазами газораспределения, протечками вакуума, попаданием масла или низкой степенью сжатия. Доля углеводородов измеряется в количестве частиц на миллион.
Высокое содержание СО
Высокое содержание СО может быть вызвано такими факторами, как:
• Чрезмерно богатая воздушно-топливная смесь
• Загрязнение воздушного фильтра
• Выход из строя клапана PCV
• Загрязнение топлива маслом
• Заедание или протечки в топливной форсунке
На исправном автомобиле с каталитическим нейтрализатором выделение одноокиси углерода обычно приближается к нулю. Содержание одноокиси углерода измеряется в процентах от полного объема в воздухе.
NOx генерируются при высокой температуре горения (выше приблизительно 1 371 °С (2 500 °F)) и обычно образуются, если температура горения не контролируется. Содержание оксидов азота измеряется в количестве частиц на миллион.
Так же рекомендуем прочитать Вам интересную статью Кузовные детали
Источник: www.mskjapan.ru