Что такое инжекторный двигатель?
Инжекторный двигатель
Еще два-три десятка лет назад большинство двигателей было оснащено карбюраторами, сегодня же на новых автомобилях карбюратор уже и не встретишь — его место заняли инжекторы. О том, что такое инжекторная система подачи топлива, как она устроена и работает, а также о ее преимуществах и недостатках читайте в этой статье.
История инжекторных двигателей
Свой путь инжекторные двигатели начали в авиации — первый авиамотор с впрыском топлива был создан еще в 1916 году (причем в России, выдающимися конструкторами Б.С. Стечкиным и А.А. Микулиным), однако массовое производство таких систем было начато перед Второй Мировой войной в Европе. Уже тогда о себе заявила фирма Bosch, которая одной из первых стала создавать инжекторные системы подачи топлива.
В автомобилях инжекторы появились в 1950-х годах, однако в то время они были не слишком интересны ни производителям, ни потребителям. И только с 1970-х годов, когда остро встал вопрос об экологической безопасности двигателей, а техника достигла достаточного для создания сложной автоматики уровня, инжекторные системы стали получать все большее и большее распространение.
На сегодняшний день инжекторные моторы занимают наибольшую долю рынка, а карбюратор уже практически стал историей.
Устройство и принцип работы инжекторной системы подачи топлива
В инжекторном двигателе, в отличие от карбюраторного, топливно-воздушная смесь подается в цилиндры не «самотеком», а с помощью специальной системы. Эта система, опираясь на показания нескольких датчиков, дозирует топливо и в распыленном виде в точно отмеченные моменты времени подает его в цилиндры. Управляется инжекторная система подачи топлива электронным блоком управления — фактически, небольшим компьютером.
Инжекторная система подачи топлива состоит из следующих основных компонентов:
– Топливные форсунки;
– Топливная рампа;
– Топливный насос;
– Электронный блок управления (ЭБУ);
– Система датчиков.
Топливная форсунка. Это основной элемент инжекторной системы. Собственно, форсунка и называется инжектором — она распыляет и подает топливо во впускные коллекторы цилиндров или непосредственно в камеры сгорания. Основу форсунки составляет корпус, в нем установлен электромагнитный клапан, который осуществляет открытие и закрытие форсунки. Распыление топлива производится через кольцевое отверстие между стенками корпуса и иглой, управляемой клапаном.
Топливная рампа. Присутствует в современных системах с распределенным впрыском. Рампа обеспечивает подачу топлива ко всем форсункам, объединяя их в единую систему.
Топливный насос. Топливо подается к форсункам под давлением в несколько атмосфер — это давление обеспечивает электрический топливный насос.
Электронный блок управления. Именно этот блок осуществляет управление инжекторной системой подачи топлива. Обычно выполнен в виде компактного блока (микроконтроллера), который соединен с несколькими датчиками, всеми форсункам, насосом, системой зажигания, регулятором холостого хода и другими системами. Собирая текущую информацию о состоянии двигателя, скорости, положении акселератора и десятках других параметров, ЭБУ определяет количество топлива и в определенные моменты производит его впрыск в цилиндры.
Система датчиков. Датчики служат для измерения в режиме реального времени ключевых параметров двигателя: массовый расход воздуха, положение коленчатого вала (для определения начала и конца тактов), положение педали газа, наличие детонаций в цилиндрах, температура охлаждающей жидкости, скорость автомобиля. На многих двигателях также устанавливаются датчики фаз, неровностей на дороге, включения кондиционера, положения распределительного вала и других параметров.
Принцип работы инжекторного двигателя очень прост: топливо распыляется форсунками во впускной коллектор цилиндра, где смешивается с воздухом, и полученная топливно-воздушная смесь через клапаны подается в камеру сгорания. Но, в отличие от карбюраторного двигателя, в инжекторе реализована возможность буквально за доли секунды подстраивать характеристики работы двигателя в зависимости от текущих условий, добиваясь наилучших показателей мощности, экономичности и экологичности.
Виды инжекторных двигателей
Существует два принципиально разных типа инжекторной системы подачи топлива:
– Моновпрыск (центральный или одноточечный впрыск);
– Распределенный (многоточечный) впрыск.
Моновпрыск. Простая и надежная система, в которой используется только одна форсунка — она установлена на впускном коллекторе, занимая место карбюратора. На сегодняшний день практически не используется, так как не удовлетворяет возросшим экологическим требованиям.
Распределенный впрыск. Система, в которой предусмотрено по одной топливной форсунке на каждый цилиндр. Существует три основных вида распределенного впрыска: одновременный (все форсунки открываются в одно время), попарно-параллельный (форсунки открываются парами) и фазированный (форсунки открываются индивидуально для каждого цилиндра, обычно перед тактом впрыска в цилиндре).
Отдельно необходимо выделить инжекторную систему с непосредственным впрыском топлива. В этой системе топливные форсунки выходят непосредственно в камеру сгорания (как в дизельных моторах). По ряду характеристик непосредственный впрыск лучше других систем, но более сложен и требователен к качеству топлива.
Преимущества и недостатки инжекторов
Широкое распространение двигателей с инжекторной системой подачи топлива обусловлено их неоспоримыми преимуществами:
– Автоматическое изменение режима работы двигателя в зависимости от текущих условий;
– Отсутствие необходимости производить какие-либо ручные настройки;
– Экономичность (потребление топлива до 20% ниже, чем у карбюраторных моторов);
– Соответствие высоким экологическим требованиям;
– Простой запуск двигателя (опять же из-за автоматической регулировки режима работы).
Однако ничто не дается просто так, и инжекторные двигатели имеют ряд недостатков:
– Сложность и относительно высокая стоимость;
– Низкая ремонтопригодность узлов системы подачи топлива — некоторые детали проще выбросить, чем ремонтировать;
– Повышенные требования к качеству и составу топлива;
– Обслуживание и ремонт может проводиться только специалистами с применением специальных инструментов и приборов;
– Зависимость от напряжения питания бортовой сети (в ряде систем отключение аккумулятора и вовсе делает работу двигателя невозможной).
Но преимущества инжекторных двигателей преобладают над недостатками, что и обеспечило их широчайшее распространение во всем мире.
Источник: www.autoopt.ru
Что такое инжекторный двигатель?
В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками. В зависимости от их количества и расположения системы впрыска делятся на:
- Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается.
- Распределённый впрыск — на каждый цилиндр приходится отдельная изолированная форсунка во впускном коллекторе.
- Прямой впрыск — форсунки расположены непосредственно возле цилиндров и впрыск топлива происходит непосредственно в него.
По методу управления:
- Механический
- Электронный — решение о времени и длительности открытия форсунок принимает микроконтроллёр, основываясь на данных датчиков.
Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения, и т. п.
Достоинства
Инжекторная система позволяет улучшить эксплуатационные и мощностные показатели двигателя (такие как динамика разгона, расход топлива, экологические характеристики и т. д.). Основным преимуществом по сравнению с карбюраторной системой является самонастройка по датчику кислорода. Это позволяет длительное время соблюдать высокие экологические стандарты без ручных регулировок.
Недостатки
Основные недостатки инжекторных двигателей по сравнению с карбюраторными:
- Высокая стоимость ремонта,
- Высокая стоимость узлов,
- Неремонтопригодность элементов,
- Высокие требования к качеству топлива,
- Необходимость в специализированном оборудовании для диагностики, обслуживания и ремонта.
История
Появление и применение систем впрыска в авиации
Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Инжекторная система питания авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционной системе впрыска в силу конструкции безразлично рабочее положение (вверх ногами или как обычно).
Первый мотор с системой впрыска был изготовлен в России в 1916 году Микулиным и Стечкиным. Он же стал первым авиационным двигателем, перешагнувшим 300-сильный рубеж мощности.
К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz 601. Именно этими моторами объемом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л.с., то «шестьсот первый» с впрыском позволял поднять мощность до 1100 сил и более. Чуть позже в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — тот самый лицензионный авиадвигатель Pratt&Whitney Hornet, который на BMW делали с 1928 года и который устанавливался, к примеру, на транспортники Junkers Ju-52. Авиамоторы в Англии, США и СССР в те времена оставались ещё исключительно карбюраторными. Японская же система впрыска на истребителях «Зеро» требовала промывки после каждого полета, и поэтому не пользовалась популярностью в войсках.
Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиамоторов с впрыском, работы по созданию отечественных инжекторных систем питания получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2.Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускался еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.
К концу войны довели до серии свой вариант впрыска и американцы. Например, моторы «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.
Применение систем впрыска в автомобилестроении
Впрыск топлива в автомобилестроении начал применяться с 1951 года когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного небольшой фирмой Goliath из Бремена. В 1954 году появилось легендарное купе Mercedes-Benz 300 SL («крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch. [1] Тем не менее, до эпохи появления дешёвых микропроцессоров и введения в странах Запада жёстких требований к экологической безопасности автомобилей идея инжекторного впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.
Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel («Бунтарь») 1957 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объемом 5,4 л в карбюраторном варианте развивала 255 л.с., а в заказной версии Electrojector уже 290 л.с. Разгон до 100 км/ч у такого седана занимал менее 8 с.
К концу первого десятилетия 21 века системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.
Источник: dic.academic.ru
Двигатель инжектор.
Рассмотрим инжектор двигателя (его устройство и принцип работы) взяв в качестве примера электронную систему распределенного впрыска.
Впрысковые инжекторные двигатели, которые производятся в настоящее время, оснащаются индивидуальными форсунками для каждого цилиндра. Форсунки соединены с топливной рампой, в которой под давлением находится топливо, подаваемое электрическим бензонасосом. В зависимости от времени в течении которого форсунки находятся в открытом положении, меняется количество впрыскиваемого топлива. Электронный блок управления (так называемые контроллер) регулирует открытие форсунок, основываясь на информации, полученной от различных датчиков.
Датчик массового расхода воздуха необходим для расчета циклового наполнения цилиндров. С помощью этого датчика происходит измерение массового расхода воздуха. Затем полученная информация пересчитывается программой в цилиндровое цикловое наполнение. В случае поломки датчика его показания системой не учитываются, и расчет производится по аварийным таблицам.
Датчик положения дроссельной заслонки рассчитывает фактор нагрузки на двигатель инжектор, а также его изменения в зависимости от оборотов двигателя, угла открытия дроссельной заслонки и циклового наполнения.
Датчик температуры охлаждающей жидкости необходим для определения коррекции топливоподачи и зажигания в зависимости от температуры, а также для управления вентилятором. В случае неисправности данного датчика его показания системой не учитываются, а показания температуры берутся в соответствии с таблицей в зависимости от времени работы двигателя инжектора.
Датчик определения положения коленчатого вала выполняет общую синхронизацию системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ является полярным датчиком. Если датчик включен не правильно, то инжекторный двигатель не будет заводится. В случае поломки датчика система не будет работать. Датчик определения положения коленчатого вала является единственным датчиком в системе, в случае поломки которого автомобиль не тронется с места. Неполадки в работе остальных датчиков не являются критическими и без них возможно своим ходом добраться до автосервиса.
Датчик кислорода определяет концентрацию кислорода в отработавших газах. Датчик посылает информацию в электронный блок управления для дельнейшей коррекции количества подаваемого топлива. Этот датчик используется исключительно в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3. Причем для Евро-3 применяются два датчика кислорода, один устанавливается до катализатора, а второй после него.
Датчик детонации необходим для контроля за возможной детонацией. В случае обнаружения возможной угрозы детонации ЭБУ запускает алгоритм гашения детонации, при этом система корректирует угол опережения зажигания.
Существует еще ряд различных датчиков, которые необходимы для нормальной работы системы. Для различных моделей автомобилей подбирается определенная комбинация датчиков в зависимости от норм токсичности, системы впрыска и так далее.
Программа ЭБУ на основании произведенных опросов установленных датчиков в программе, осуществляет управление различными исполнительными механизмами. К ним относятся: модуль зажигания, бензонасос, форсунки, регулятор холостого хода, вентилятор системы охлаждения, клапан адсорбера системы улавливания паров бензина и прочие, в зависимости от модели автомобиля.
Если о большинстве названных устройств имеется хотя бы малейшее представление, то об адсорбере не специалист редко слышал. Адсорбер – элемент замкнутой цепи рециркуляции паров бензина. Согласно нормам Евро-2, контакт вентиляции бензобака с атмосферой запрещен, а бензиновые пары должны адсорбироваться (то есть собираться) и в процессе продувки направляться в цилиндры для дальнейшего дожига. При выключенном двигателе бензиновые пары из бака и впускного коллектора попадают в адсорбер, где они поглощаются. Во время запуска двигателя, по команде ЭБУ, адсорбер начинает продуваться потоком воздуха, который всасывается двигателем. Под действием воздушного потока, пары увлекаются в камеру сгорания и там дожигаются.
Виды инжекторных двигателей.
Системы впрыска зависят от места подачи топлива и количества форсунок. Они бывают трех типов:
- одноточечная (моновпрыск). Одна форсунка устанавливается на впускной коллектор на все цилиндры.
- многоточечный (распределенный). При таком типе двигателя, каждый цилиндр оснащается своей форсункой, подающей топливо в коллектор)
- непосредственный. В этом случае топливо подается непосредственно в цилиндры с помощью форсунок. Примером могут служить дизельные инжекторные двигатели.
Системы впрыска инжекторных двигателей.
Моновпрыск является самым простым видом. В нем небольшое количество управляющей электроники. Недостатком является его небольшая эффективность, поскольку управляющая электроника позволяет контролировать поступающую информацию с датчиков и, в случае необходимости, влиять на параметры впрыска. Достоинством одноточечного прыска является тот факт, что под него можно легко адаптировать карбюраторные двигатели обойдясь практически без существенных переделок конструкции или технологических изменений при производстве. Также монопрыск обладает по сравнению с карбюратором позволяет сэкономить топливо, является более экологически чистотым и является относительно стабильным и надежным по своим параметрам. Однако одноточечный впрыск уступает приёмистости инжекторного двигателя. Кроме того, в результате работы моновпрыска около 30% бензина остается в качестве осадка на стенках коллектора.
Безусловно, система моновпрыска является большим прорывом в сравнении с карбюраторной системой питания, однако в настоящее время уже не в состоянии удовлетворять современные требования.
Многоточечный впрыск является более совершенной системой подачи топлива, при которой оно подается отдельно к каждому цилиндру. Данная система подачи топлива значительно мощнее, экономичнее, но при этом и сложнее. Многоточечный впрыск позволяет увеличить мощность инжекторного двигателя примерно на 7-10 процентов. Основными достоинствами распределенного впрыска можно считать:
- можно автоматически настроить подачу топлива при различных оборотах и в результате, улучшить наполнение цилиндров. Как следствие, это позволит при одинаковой мощности автомобиля разогнаться быстрее.
- поскольку впрыск топлива происходит в непосредственной близости от впускного клапана, значительно уменьшается его количество, которое оседает на стенках впускного коллектора. В результате появляется возможность более точной регулировки подачи топлива.
Непосредственный впрыск является более эффективным средством в оптимизации сгорания смеси и повышения КПД бензинового инжекторного двигателя. Его работа основывается на простых принципах:
- топливо тщательнее распыляется, а значит лучше перемешивается с воздухом и более грамотно распоряжается готовой смесью на разных режимах работы двигателя. В результате, инжекторный двигатель с непосредственным впрыском потребляет меньший объем топлива, чем обычные «впрысковые» моторы. Это становится особенно заметно при спокойной езде на небольшой скорости;
- при равных рабочих объемах двигателей, позволяет разгоняться значительно быстрее;
- является более экологичным;
- в результате большей степени сжатия и одновременного эффекта охлаждения воздуха при испарении топлива в цилиндрах, гарантируется более высокая литровая мощность.
Необходимо учитывать, что данный вид инжекторного двигателя требует качественный бензин с низким уровнем содержания серы и прочих механических примесей. Это является обязательным условием для обеспечения нормальной работы топливной системы.
Источник: www.calc.ru